4.8 Article

Surface Electroinitiated Emulsion Polymerization (SEEP): A Mechanistic Approach

期刊

CHEMISTRY OF MATERIALS
卷 21, 期 18, 页码 4261-4274

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cm901430t

关键词

-

向作者/读者索取更多资源

As recently reported, the SEEP process (surface electroinitiated emulsion polymerization) is a new grafting method that provides covalently grafted polymer films on conducting or semiconducting surfaces by radical polymerization in aqueous dispersed media. It relies on cathodic electroinitiation, which creates radical species able to start a radical polymerization. Contrary to the formerly described cathodic electrografting of vinylic polymers (CE), which also delivers submicrometer-thick and stable polymer films on conducting substrates but requires strictly anhydrous conditions and organic aprotic solvent, SEEP brings a major improvement in switching from a purely anionic mechanism to a radical one by adding an aryldiazonium salt in the reaction mixture, while retaining the same polymer films characteristics. Moreover, SEEP is not restricted to water-soluble monomers but can be performed even with hydrophobic ones, such as n-butyl methacrylate (BMA). In Such cases, a surfactant is necessary to stabilize the monomer in water emulsion. From this one-pot electrografting process performed in water at room temperature, in a few minutes, without restrictions on vinylic monomer water solubility, results a polymer coating strongly grafted to the substrate. This article aims at completing our first one and focuses on mechanistic aspects of SEEP to eventually establish a possible grafting onto mechanism. To achieve that goal, we have analyzed grafted polymer films obtained by SEEP on gold substrate from BMA in water as a miniemulsion by IR-ATR, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS), and atomic force microscopy (AFM).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据