4.8 Article

Synthesis of Hybrid Adsorbents Combining Sol-Gel Processing and Molecular Imprinting Applied to Lead Removal from Aqueous Streams

期刊

CHEMISTRY OF MATERIALS
卷 21, 期 8, 页码 1439-1450

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cm801480v

关键词

-

资金

  1. Ministry of Education (SEP) [103.5/04/2586]

向作者/读者索取更多资源

Two high-capacity thiol functionalized adsorbents are prepared, using sol-gel processing, and applied to the removal of lead(II) from aqueous streams. The first adsorbent (SN) is prepared by co-condensing oligomers of tetraethoxysilane (TEOS) and 3-mercaptopropyltrimethoxysilane (MPS); the second adsorbent (MI) is synthesized by a combined co-condensation/molecular imprinting route of TEOS and MPS. The resulting physicochemical properties of adsorbents are investigated by nitrogen sorption measurements, elemental analysis, Fourier transform infrared spectroscopy (FTIR), solid-state C-13 and Si-29 cross-polarization magic angle spinning nuclear magnetic resonance (C-13 and Si-19 CPMAS NMR, respectively), and X-ray photoelectron spectroscopy (XPS). The adsorbents exhibit high ligand densities (1.19 mmol/g for SN and 1.03 mmol/g for MI), improved Brunauer-Emmett-Teller (BET) surface areas (S-BET = 129 m(2)/g for SN and 464 m(2)/g for MI), and highly developed mesoporosity (D-p = 15.1 nm for SN and 8.3 nm for MI). Si-29 CPMAS NMR measurements indicate that the silicon oxide solid structure of adsorbents is not modified by lead adsorption. XPS results indicate the presence of lead acetate species on the surface of adsorbents. Batch adsorption data are explained by a mechanism in which a hydrated species (Pb(OOCCH3)(H2O)(5)+) forms a monodentate complex with thiol surface groups. Further characterization of the adsorbents shows rapid adsorption kinetics and equilibrium lead(II) adsorption capacities of 1.13 and 0.715 mmol/g for SN and MI. Lead adsorption dynamics in a packed column indicates high lead uptakes (155 and 80 mg Pb/g-adsorbent for SN and MI, respectively). Combined and simple sol-gel synthesis routes for preparation of adsorbents with high ligand densities and mesoporous structures are demonstrated here.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据