4.8 Article

Sidewall covalent functionalization of single wall carbon nanotubes through reactions of fluoronanotubes with urea, guanidine, and thiourea

期刊

CHEMISTRY OF MATERIALS
卷 20, 期 8, 页码 2685-2695

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cm7035037

关键词

-

向作者/读者索取更多资源

Sidewall covalent functionalization of carbon nanotubes is necessary to achieve smaller bundles and individuals, link to other functional moieties, and aid in better dispersion in composites. In the present study, we developed a one-step functionalization method which uses fluorinated single wall carbon nanotubes (F-SWNTs) as starting materials in the reactions with urea, thiourea, or guanidine. Through these reactions, the derivatives with terminal amide and heteroamide groups on the nanotube sidewalls have been prepared. The nanotubes also contain some residual fluorine generating bifunctional derivatives. These derivatives were characterized by Raman spectroscopy, Fourier Transform infrared (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). Compared to fluorinated nanotubes, the urea-functionalized SWNTs (U-F-SWNTs) have shown among the three derivatives the highest stability of their dispersions in DMF, water, and aqueous urea solutions, thereby creating new opportunities for biomedical applications with nanotubes. These bifunctional derivatives show improved dispersion in the epoxy system that should aid in creating an interface between the SWNTs and the polymers and result in much stronger composites. The three derivatives are efficiently synthesized, and the method can be easily scaled up for applications such as creating an integrated polymer network for stronger composites, coatings, and for use in biomedical applications and nanoelectronic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据