4.8 Article

Designer binary nanostructures toward water slipping superhydrophobic surfaces

期刊

CHEMISTRY OF MATERIALS
卷 20, 期 6, 页码 2247-2251

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cm703038j

关键词

-

向作者/读者索取更多资源

This report demonstrates a synthetic route for ordering a set of Au nanoparticles on the vertically aligned conducting polymer (polypyrrole) for the superhydrophobic surfaces with low water flow friction. It demonstrates how one can use polymer nanorod pillars and a variety of Au nanoparticles to generate controlled surface roughness. Synthetic strategies utilized to make such surfaces include the electrochemical polymerization of conducting polymers within the confines of anodized alumina templates and subsequent Au nanoparticle immobilization on the surface of polymer pillars. This method provides a surface that contains roughness on two independently controllable levels, say, the submicroscopic roughness from polymer pillar dimensions and the nanoscopic roughness from the appropriate size selection of An nanoparticles. With the present results, it is clearly evident that a combination of two scale roughnesses composed of nanorods and nanoparticles could be utilized for the synthesis of superhydrophobic surfaces, which mimics the lotus leaves.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据