4.7 Article

Inheritable stimulatory effects of caffeine on steroidogenic acute regulatory protein expression and cortisol production in human adrenocortical cells

期刊

CHEMICO-BIOLOGICAL INTERACTIONS
卷 195, 期 1, 页码 68-75

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.cbi.2011.11.001

关键词

Caffeine; Steroidogenesis; Steroidogenic acute regulatory protein; Cortisol; DNA methylation

资金

  1. National Natural Science Foundation of China [30800931, 30830112, 81173138, 30672566]
  2. Wuhan University [4101028]

向作者/读者索取更多资源

Caffeine is the most widely consumed psychoactive substance in the world. It can elevate the level of glucocorticoid which is involved in metabolism regulation, stress response, and immune function. However, the specific mechanism has yet to be elucidated. Glucocorticoid is steroid hormone synthesized in adrenal cortex and the key rate-limiting step in its biosynthesis is mediated by steroidogenic acute regulatory protein (StAR). This study was designed to investigate the direct effects and inheritable epigenetic mechanisms of caffeine on cortisol production and StAR expression in human adrenocortical cells. The human adrenocortical cell line NCI-H295A was cultured with 0.4-40 mu M caffeine. There was a significant increase of the cortisol production in cells. In both acutely and chronically caffeine-treated cell groups, mRNA and protein expressions of StAR were stimulated in a dose-dependent manner. DNA methylation detection via bisulfite-sequencing PCR (BSP) uncovered a single site CpG demethylation at nt -682 within the StAR promoter region. Then we investigated how long the increased StAR expression and the single CpG demethylation could last. The caffeine was withdrawn after 48 h of treatment and then the cells were continually subcultured for up to 5 and 10 passages, respectively. The results showed that the StAR expression at post-caffeine passage 10 still increased, as compared with that in the control. The caffeine-induced demethylation at nt -682 in StAR promoter underwent a similar time course as StAR expression does. The present study reveals the direct effect and possible inheritable epigenetic mechanism of caffeine on steroidogenesis in human adrenocortical cells and has implications for our understanding of the consumption of caffeine. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据