4.7 Article

Bioinformatic and biochemical characterization of DCXR and DHRS2/4 from Caenorhabditis elegans

期刊

CHEMICO-BIOLOGICAL INTERACTIONS
卷 191, 期 1-3, 页码 75-82

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.cbi.2011.01.034

关键词

Carbonyl reduction; Short-chain dehydrogenases/reductases (SDR); Hidden Markov model; Phylogenetic analysis; Caenorhabditis elegans

资金

  1. Deutsche Forschungsgemeinschaft [MA 1704/4-3, MA 1704/5-1]
  2. Kiel Cluster of Excellence The Future Ocean

向作者/读者索取更多资源

Several reductases belonging to the large enzyme superfamily of the short-chain dehydrogenases/reductases (SDR) are involved in the reductive metabolism of carbonyl containing xenobiotics. In order to characterize the human enzymes dicarbonyl/L-xylulose reductase (DCXR), and dehydrogenase/reductase members 2 and 4 (DHRS2, DHRS4) in terms of metabolism of xenobiotics, orthologues from the model organism Caenorhabditis elegans (C. elegans) were identified by using hidden Markov models that were developed in the present study. Accordingly, we describe the characterization of proteins from C. elegans as orthologous to the human enzymes DCXR and DHRS2/4 using a combined approach of bioinformatic and biochemical methods. With the hidden Markov model based system we identified the C. elegans proteins SDR20C18, SDR25C21 and SDR25C22 as being homologous to the human enzymes DCXR, and DHRS2 or DHRS4, respectively. After cloning and overexpression of these three C. elegans genes in Escherichia coli we could purify SDR20C18 and SDR25C22 as soluble proteins by Ni-affinity chromatography, whereas recombinant SDR25C21 was only found in inclusion bodies. Both SDR20C18 (UniProtAcc: Q21929) and SDR25C22 (UniProtAcc: Q93790) were tested with a variety of xenobotic carbonyl compounds as substrates. A comparison of the catalytic activities of SDR20C18 and SDR25C22 with well-known substrates of the human forms revealed that SDR20C18 is the DCXR-orthologue enzyme to the human enzyme and that SDR25C22 might be a DHRS2/4 homologue. Due to their high sequence identity, it was so far not possible to distinguish between SDR25C22 and the human DHRS2/4 proteins by means of sequence analysis alone. However, the study of homologue genes in the model organism C. elegans can provide valuable information on the putative physiological role of the corresponding human form. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据