4.8 Review

Spatiotemporal catalytic dynamics within single nanocatalysts revealed by single-molecule microscopy

期刊

CHEMICAL SOCIETY REVIEWS
卷 43, 期 4, 页码 1107-1117

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cs60215j

关键词

-

资金

  1. Department of Energy [DE-FG02-10ER16199]
  2. Army Research Office [W911NF0910232]
  3. National Science Foundation [CBET-1263736]
  4. Directorate For Engineering
  5. Div Of Chem, Bioeng, Env, & Transp Sys [1263736] Funding Source: National Science Foundation

向作者/读者索取更多资源

This review discusses the latest advances in using single-molecule microscopy of fluorogenic reactions to examine and understand the spatiotemporal catalytic behaviors of single metal nanoparticles of various shapes including pseudospheres, nanorods, and nanoplates. Real-time single-turnover kinetics reveal size-, catalysis-, and metal-dependent temporal activity fluctuations of single pseudospherical nanoparticles (<20 nm in diameter). These temporal catalytic dynamics can be related to nanoparticles' dynamic surface restructuring whose timescales and energetics can be quantified. Single-molecule super-resolution catalysis imaging further enables the direct quantification of catalytic activities at different surface sites (i.e., ends vs. sides, or corner, edge vs. facet regions) on single pseudo 1-D and 2-D nanocrystals, and uncovers linear and radial activity gradients within the same surface facets. These spatial activity patterns within single nanocrystals can be attributed to the inhomogeneous distributions of low-coordination surface sites, including corner, edge, and defect sites, among which the distribution of defect sites is correlated with the nanocrystals' morphology and growth mechanisms. A brief discussion is given on the extension of the single-molecule imaging approach to catalysis that does not involve fluorescent molecules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据