4.8 Review

Mass transfer in mesoporous materials: the benefit of microscopic diffusion measurement

期刊

CHEMICAL SOCIETY REVIEWS
卷 42, 期 9, 页码 4172-4197

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cs35326e

关键词

-

资金

  1. German Science Foundation [FOR 877]
  2. Fonds der Chemischen Industrie

向作者/读者索取更多资源

We introduce the various options of experimentally observing mass transfer in mesoporous materials. It shall be demonstrated that the exploration of the underlying mechanisms is excessively complicated by the complexity of the phenomena contributing to molecular transport in such systems and their mutual interdependence. Microscopic diffusion measurement by the pulsed field gradient (PFG) technique of NMR offers the unique option to measure both the relative amount of molecules adsorbed and the probability distribution of their displacements over space scales relevant to fundamental adsorption science just as for technological application. These advantages are shown to have cared for a recent breakthrough in our understanding. The examples presented include the measurement of diffusion in purely mesoporous materials and the rationalization of the complex concentration patterns revealed by such studies on the basis of suitably chosen micro-kinetic models. As an interesting feature, transition into the supercritical state is shown to become directly observable by monitoring a jump in the diffusivities during temperature enhancement, occurring at temperatures notably below the bulk critical temperature. PFG NMR studies with hierarchical materials are shown to permit selective diffusion measurement with each of the involved subspaces, in parallel with the measurement of the overall diffusivity as the key parameter for the technological exploitation of such materials. We refer to the occurrence of diffusion hysteresis as a novel phenomenon, found to accompany phase transitions quite in general. Though further complicating the measuring procedure and the correlation between experimental observation and the underlying mechanisms, diffusion hysteresis is doubtlessly among the new options provided by diffusion studies for gaining deeper insight into the structure and dynamics of complex porous systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据