4.8 Review

Bimetallic catalysts for upgrading of biomass to fuels and chemicals

期刊

CHEMICAL SOCIETY REVIEWS
卷 41, 期 24, 页码 8075-8098

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2cs35188a

关键词

-

资金

  1. DOE Great Lakes Bioenergy Research Center [DOE Office of Science BER DE-FC02-07ER64494]
  2. Defense Advanced Research Projects Agency (Surf-cat: Catalysts for Production of JP-8 range molecules from Lignocellulosic Biomass)

向作者/读者索取更多资源

Research interest in biomass conversion to fuels and chemicals has increased significantly in the last decade as the necessity for a renewable source of carbon has become more evident. Accordingly, many different reactions and processes to convert biomass into high-value products and fuels have been proposed in the literature. Special attention has been given to the conversion of lignocellulosic biomass, which does not compete with food sources and is widely available as a low cost feedstock. In this review, we start with a brief introduction on lignocellulose and the different chemical structures of its components: cellulose, hemicellulose, and lignin. These three components allow for the production of different chemicals after fractionation. After a brief overview of the main reactions involved in biomass conversion, we focus on those where bimetallic catalysts are playing an important role. Although the reactions are similar for cellulose and hemicellulose, which contain C-6 and C-5 sugars, respectively, different products are obtained, and therefore, they have been reviewed separately. The third major fraction of lignocellulose that we address is lignin, which has significant challenges to overcome, as its structure makes catalytic processing more challenging. Bimetallic catalysts offer the possibility of enabling lignocellulosic processing to become a larger part of the biofuels and renewable chemical industry. This review summarizes recent results published in the literature for biomass upgrading reactions using bimetallic catalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据