4.8 Review

Nanoengineered glycan sensors enabling native glycoprofiling for medicinal applications: towards profiling glycoproteins without labeling or liberation steps

期刊

CHEMICAL SOCIETY REVIEWS
卷 41, 期 17, 页码 5744-5779

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2cs35142k

关键词

-

向作者/读者索取更多资源

Nanoengineered glycan sensors may help realize the long-held goal of accurate and rapid glycoprotein profiling without labeling or glycan liberation steps. Current methods of profiling oligosaccharides displayed on protein surfaces, such as liquid chromatography, mass spectrometry, capillary electrophoresis, and microarray methods, are limited by sample pretreatment and quantitative accuracy. Microarrayed platforms can be improved with methods that better estimate kinetic parameters rather than simply reporting relative binding information. These quantitative glycan sensors are enabled by an emerging class of nanoengineered materials that differ in their mode of signal transduction from traditional methods. Platforms that respond to mass changes include a quartz crystal microbalance and cantilever sensors. Electronic response can be detected from electrochemical, field effect transistor, and pore impedance sensors. Optical methods include fluorescent frontal affinity chromatography, surface plasmon resonance methods, and fluorescent carbon nanotubes. After a very brief primer on glycobiology and its connection to medicine, these emerging systems are critically reviewed for their potential use as core sensors in future glycoprofiling tools.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据