4.8 Review

Active metal template synthesis of rotaxanes, catenanes and molecular shuttles

期刊

CHEMICAL SOCIETY REVIEWS
卷 38, 期 6, 页码 1530-1541

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b804243h

关键词

-

资金

  1. Rotaxanes and catenanes

向作者/读者索取更多资源

Active metal template synthesis is a powerful new strategy for the construction of rotaxanes, catenanes and other mechanically interlocked molecular structures. The key feature is that the metal plays a dual role during the assembly of the interlocked architecture, acting as both a template for entwining or threading the components and as a catalyst for capturing the interlocked final product by covalent bond formation. Unlike traditional passive'' metal template methods to rotaxanes and catenanes, permanent recognition motifs are not required on each of the components to be interlocked (i.e., the assembly can be traceless) and the template can often be used in sub-stoichiometric quantities. Since its inception in 2006, a rapidly growing number of different metal-catalysed reactions have proven suitable for the active metal template synthesis of both rotaxanes and catenanes, including the copper(I)-catalysed terminal alkyne-azide cycloaddition (the CuAAC click'' reaction), palladium- and copper-catalysed alkyne homocouplings and heterocouplings, and palladium- catalysed oxidative Heck couplings and Michael additions. In addition to simple rotaxanes and catenanes, the synthetic strategy has been used to construct switchable molecular shuttles with weak intercomponent interactions (a requirement for fast shuttling) and to provide insight into the mechanisms of transition metal-catalysed reactions. In this tutorial review we highlight the utility and potential of the early examples of the active metal template strategy in mechanically interlocked molecule synthesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据