4.5 Article

Biotransformation of 2,2′,4,4′-Tetrabromodiphenyl Ether (BDE-47) by Human Liver Microsomes: Identification of Cytochrome P450 2B6 as the Major Enzyme Involved

期刊

CHEMICAL RESEARCH IN TOXICOLOGY
卷 26, 期 5, 页码 721-731

出版社

AMER CHEMICAL SOC
DOI: 10.1021/tx300522u

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada [RGPIN 138733-10]
  2. University of British Columbia

向作者/读者索取更多资源

Polybrominated diphenyl ethers (PBDEs) were widely used flame retardants that have become persistent environmental pollutants. In the present study, we investigated the in vitro oxidative metabolism of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a major PBDE detected in human tissue and environmental samples. Biotransformation of BDE-47 by pooled and individual human liver microsomes and by human recombinant cytochrome P450 (P450) enzymes was assessed using a liquid chromatography/tandem mass spectrometry-based method. Of the nine hydroxylated metabolites of BDE-47 produced by human liver microsomes, seven metabolites were identified using authentic standards. A monohydroxy-tetrabrominated and a dihydroxy-tetrabrominated metabolite remain unidentified. Kinetic analysis of the rates of metabolite formation revealed that the major metabolites were 5-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (5-OH-BDE-47), 6-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (6-OH-BDE-47), and possibly the unidentified monohydroxy-tetrabrominated metabolite. Among the human recombinant P450 enzymes tested, P450 2B6 was the most active enzyme in the formation of the hydroxylated metabolites of BDE-47. Moreover, the formation of all metabolites of BDE-47 by pooled human liver microsomes was inhibited by a P450 2B6-specific antibody and was highly correlated with P450 2B6-mediated activity in single donor liver microsomes indicating that P450 2B6 was the major P450 responsible for the biotransformation of BDE-47. Additional experiments involving the incubation of liver microsomes with individual monohydroxy-tetrabrominated metabolites in place of BDE-47 demonstrated that 2,4-dibromophenol was a product of BDE-47 and several primary metabolites, but the dihydroxy-tetrabrominated metabolite was not formed by sequential hydroxylation of any of the monohydroxy-tetrabrominated metabolites tested. The present study provides a comprehensive characterization of the oxidative metabolism of BDE-47 by human liver microsomes and P450 2B6.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据