4.5 Article

Toxicity of Multiwalled Carbon Nanotubes with End Defects Critically Depends on Their Functionalization Density

期刊

CHEMICAL RESEARCH IN TOXICOLOGY
卷 24, 期 11, 页码 2028-2039

出版社

AMER CHEMICAL SOC
DOI: 10.1021/tx2003728

关键词

-

资金

  1. Indian Council of Medical Research (ICMR)
  2. Department of Science & Technology (DST), Government of India, New Delhi

向作者/读者索取更多资源

Carboxylated carbon nanotubes stand as the most promising nanovectors for biomedical and pharmaceutical applications due to their ease of covalent conjugation with eclectic functional molecules including therapeutic drugs, proteins, and oligonucleotides. In the present study, we attempt to investigate how the toxicity of acid-oxidized multiwalled carbon nanotubes (MWCNTs) can be tweaked by altering their degree of functionalization and correlate the toxicity trend with their biodistribution profile. In line with that rationale, mice were exposed to 10 mg/kg of pristine (p) and acid-oxidized (f) MWCNTs with varying degrees of carboxylation through a single dose of intravenous injection. Thereafter, extensive toxicity studies were carried out to comprehend the short-term (7 day) and long-term (28 day) impact of p- and various f-MWCNT preparations on the physiology of healthy mice. Pristine MWCNTs with a high aspect ratio, surface hydrophobicity, and metallic impurities were found to induce significant hepatotoxicity and oxidative damage in mice, albeit the damage was recovered after 28 days of treatment. Conversely, acid-oxidized carboxylated CNTs with shorter lengths, hydrophilic surfaces, and high aqueous dispersibility proved to be less toxic and more biocompatible than their pristine counterparts. A thorough scrutiny of various biochemical parameters, inflammation indexes, and histopathological examination of liver indicated that toxicity of MWCNTs systematically decreased with the increased functionalization density. The degree of shortening and functionalization achieved by refluxing p-MWCNTs with strong mineral acids for 4 h were sufficient to render the CNTs completely hydrophilic and biocompatible, while inducing minimal hepatic accumulation and inflammation. Quantitative biodistribution studies in mice, intravenously injected with Tc-99m labeled MWCNTs, clearly designated that clearance of CNTs from reticuloendothelial system (RES) organs such as liver, spleen, and lungs was critically functionalization density dependent. Well-individualized MWCNTs with shorter lengths (<500 nm) and higher degrees of oxidation (surface carboxyl density >3 mu mol/mg) were not retained in any of the RES organs and rapidly cleared out from the systematic circulation through renal excretion route without inducing any obvious nephrotoxicity. As both p- and f-MWCNT-treated groups were devoid of any obvious nephrotoxicity, CNTs with larger dimensions and lower degrees of functionalization, which fail to dear out from the body via renal excretion route, were thought to be excreted via biliary pathway in faeces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据