4.5 Article

Ascorbic Acid Promotes Detoxification and Elimination of 4-Hydroxy-2(E)-nonenal in Human Monocytic THP-1 Cells

期刊

CHEMICAL RESEARCH IN TOXICOLOGY
卷 22, 期 5, 页码 863-874

出版社

AMER CHEMICAL SOC
DOI: 10.1021/tx900042u

关键词

-

资金

  1. NIH [R01HL081721, S10RR022589, P30ES000210]

向作者/读者索取更多资源

4-Hydroxy-2(E)-nonenal (HNE), a reactive aldehyde derived from oxidized lipids, has been implicated in the pathogenesis of cardiovascular and neurological diseases, in part by its ability to induce oxidative stress and by protein carbonylation in target cells. The effects of intracellular ascorbic acid (vitamin C) on HNE-induced cytotoxicity and protein carbonylation were investigated in human THP-1 monocytic leukemia cells. HNE treatment of these cells resulted in apoptosis, necrosis, and protein carbonylation. Ascorbic acid accumulated in the cells at concentrations of 6.4 or 8.9 mM after treatment with 0.1 or 1 mM ascorbate in the medium for 18 h. Pretreatment of cells with 1.0 mM ascorbate decreased HNE-induced formation of reactive oxygen species and formation of protein carbonyls. The protective effects of ascorbate were associated with an increase in the formation of GSH-HNE conjugate and its phase I metabolites, measured by LC-MS/MS, and with increased transport of GSH conjugates from the cells into the medium. Ascorbate pretreatment enhanced the efflux of the multidrug resistant protein (MRP) substrate, carboxy-2',7'-dichlorofluoreseein (CDF), and it prevented the HNE-induced inhibition of CDF export from THP-1 cells, suggesting that the protective effect or ascorbate against HNE cytotoxicity is through modulation of MRP-mediated transport of GSH-HNE conjugate metabolites. The formation of ascorbate adducts of HNE was observed in the cell exposure experiments, but it represented a minor pathway contributing to the elimination of HNE and to the protective effects of ascorbate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据