4.5 Article

Effect of Crystal Size and Surface Functionalization on the Cytotoxicity of Silicalite-1 Nanoparticles

期刊

CHEMICAL RESEARCH IN TOXICOLOGY
卷 22, 期 7, 页码 1359-1368

出版社

AMER CHEMICAL SOC
DOI: 10.1021/tx900153k

关键词

-

资金

  1. NSF NER [CMMI-0608977]
  2. Center for Health Effects and Environmental Contamination (CHEEC) at the University of Iowa

向作者/读者索取更多资源

In this report, we describe the synthesis and characterization of nanocrystalline silicalite (the purely siliceous form of the zeolite, ZSM-5) of defined crystal size and surface functionalization and determine the effect on the type and degree of cytotoxicity induced in two distinct model cell lines. The silicalite materials were characterized by powder X-ray diffraction, dynamic light scattering and potential, solid state NMR, thermal gravimetric analysis, and nitrogen adsorption using the BET method to determine specific surface area. The silicalite samples were functionalized with amino, thiol, and carboxy groups and had crystal sizes of approximately 30, 150, and 500 nm. The cytotoxicities of the silicalite samples with different crystal sizes and different surface functional groups were investigated using human embryonic kidney 293 (HEK-293) cells and RAW264.7 macrophage cell lines. We used the lactic dehydrogenase release assay to measure damage to the cell membrane, the caspase 3/7 activity assay to measure key molecules involved in apoptosis, and the Annexin V-propidium iodide staining method to provide visual confirmation of the types of cell death induced. We have shown that the impact of size and surface functionalization of silicalite nanoparticles on cell toxicity and mechanism of cell death is cell type-dependent. Thirty nanometer silicalite nanoparticles were nontoxic in RAW264.7 cells relative to untreated controls but caused necrosis in HEK293 cells. Carboxy-functionalized 500 nm silicalite nanoparticles resulted in apoptosis and necrosis in RAW264.7 cells and predominantly activated apoptosis in HEK293 cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据