4.5 Article

Further Investigation of Microbial Degradation of Microcystin Using the Advanced Marfey Method

期刊

CHEMICAL RESEARCH IN TOXICOLOGY
卷 22, 期 2, 页码 391-398

出版社

AMER CHEMICAL SOC
DOI: 10.1021/tx8003517

关键词

-

向作者/读者索取更多资源

It is known that microcystin (MC) is subject to microbial degradation to provide three types of products, linearized MCLR (Adda-Glu-Mdha-Ala-Leu-MeAsp-Arg), tetrapeptide Adda-Glu-Mdha-Ala, and Adda. They can be readily detected by the usual HPLC, because they commonly have an Adda moiety with a diene and an absorption maximum at 238 nm as the chromophore. However, no other degradation products without such a chromophore have been isolated to date. In this study, cell preparation of a bacterium B-9 that can degrade MC and detection of the degradation products were devised. First, we regulated the B-9 hydrolytic activity by washing with sodium chloride solution to obtain a desired cell preparation, which permitted an additional intermediate and the final products of MCLR to be obtained. Second, the resulting products could be firmly identified using the advanced Marfey method with the aid of log D. As a result of these experiments, the following degradation products were further identified: a tetrapeptide, Adda-Glu-Mdha-Ala, tripeptides Adda-Glu-Mdha, Glu-Mdha-Ala, and Arg-MeAsp-Leu, a dipeptide, Glu-Mdha, and amino acids Adda, Arg, and methylamine derived from Mdha. The present study expands the hydrolytic activity of the B-9 strain, which can hydrolyze not only cyanobacterial cyclic peptides but also MC to the intermediates and final products. The established characterization method composed of the advanced Marfey method and log D would be a standard technique for the structural characterization of a mixture of amino acids and peptides.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据