4.5 Article

Hypochlorous acid damages histone proteins forming 3-chlorotyrosine and 3,5-dichlorotyrosine

期刊

CHEMICAL RESEARCH IN TOXICOLOGY
卷 21, 期 5, 页码 1028-1038

出版社

AMER CHEMICAL SOC
DOI: 10.1021/tx7003486

关键词

-

向作者/读者索取更多资源

While the last 30 years chronicles an extensive effort to understand the damage to DNA caused by reactive oxygen species (ROS), little research has examined the chemical damage to the histone proteins found in chromatin. Hypochlorous acid (HOCl), the primary product of activated neutrophils, is known to damage both DNA and proteins. This article describes the use of mass spectrometry to quantitate the formation of 3-chlorotyrosine and 3,5-dichlorotyrosine, stable and unique markers of protein damage caused by HOCl, in the core histone proteins. Our results indicate that up to 25% of the tyrosine in histone proteins become chlorinated by excess HOCl We also observe significant formation of 3-chlorotyrosine and 3,5-dichlorotyrosine at low HOCl concentrations and short reaction times. We use mass spectrometry to identify the tyrosine residues on each histone protein that are chlorinated based on the observation of chlorine-containing peptides following protease digestion of histone proteins exposed to HOCl The tyrosine residues preferentially chlorinated by HOCl are generally within three residues of a lysine or histidine residue, further implicating the initial formation of chloramines in the efficient chlorination of tyrosine residues. The methods and results described here should further our understanding of how HOCl produced at sites of inflammation might damage chromatin.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据