4.6 Article

Voltammetry of the liposoluble vitamins (A, D, E and K) in organic solvents

期刊

CHEMICAL RECORD
卷 12, 期 1, 页码 188-200

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/tcr.201100005

关键词

lipid bilayer membranes; electrochemical mechanisms; proton-coupled electron transfer (PCET); cyclic voltammetry; redox chemistry

资金

  1. Singapore Government Ministry of Education [T208B1222]

向作者/读者索取更多资源

A review summarizing the voltammetric literature of the liposoluble vitamins A, D, E and K in organic solvents containing supporting electrolyte is presented. Electrochemical studies that were performed by attaching the vitamins to electrode surfaces and performing voltammetric scans in aqueous solutions are also summarized. Vitamins A (retinol and retinal) and D (cholecaliferol and ergocalciferol) undergo chemically irreversible voltammetric oxidation processes in organic solvents to form complicated or unknown compounds that cannot be electrochemically converted back to the starting materials. In contrast to vitamins A and D, vitamins E and K undergo chemically reversible electron-transfer processes that are often coupled to proton-transfer reactions. Vitamin E (a phenol) is voltammetrically oxidized in aprotic organic solvents in a -2e-/-H+ process to form a diamagnetic cation, which is unusually long-lived compared to the analogous cations produced during the oxidation of other phenols. In an aqueous environment, vitamin E is electrochemically oxidized to the hydroquinone in a chemically irreversible -2e- process. In low moisture content aprotic solvents, vitamin K (a quinone) is reduced in two one-electron chemically reversible steps to form first a radical anion (semiquinone, at E1) and then at more negative potentials a dianion is formed (at E2). The dianion is especially prone to strong hydrogen-bonding interactions with trace water present in the organic solvents, resulting in a shift in the formal reduction potential of E2 to more positive potentials as more water is added to the solvent. DOI 10.1002/tcr.201100005

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据