4.7 Article

Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 298, 期 -, 页码 241-251

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2015.06.008

关键词

Antioxidant enzymes; Arsenic; Rice; Sulfate and arsenic transporters; Sulfur; Thiol metabolism

资金

  1. CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow from (CSIR-INDEPTH), New Delhi, India
  2. CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow, New Delhi, India [NWP-0111]
  3. Council of Scientific and Industrial Research, New Delhi, India

向作者/读者索取更多资源

Arsenic (As) contamination is a global issue, with South Asia and South East Asia being worst affected. Rice is major crop in these regions and can potentially pose serious health risks due to its known As accumulation potential. Sulfur (S) is an essential macronutrient and a vital element to combat As toxicity. The aim of this study was to investigate the role of S with regards to As toxicity in rice under different S regimes. To achieve this aim, plants were stressed with AsIII and AsV under three different S conditions (low sulfur (0.5 mM), normal sulfur (3.5 mM) and high sulfur (5.0 mM)). High S treatment resulted in increased root As accumulation, likely due to As complexation through enhanced synthesis of thiolic ligands, such as non-protein thiols and phytochelatins, which restricted As translocation to the shoots. Enzymes of S assimilatory pathways and downstream thiolic metabolites were up-regulated with increased S supplementation; however, to maintain optimum concentrations of S, transcript levels of sulfate transporters were down-regulated at high S concentration. Oxidative stress generated due to As was counterbalanced in the high S treatment by reducing hydrogen peroxide concentration and enhancing antioxidant enzyme activities. The highs concentration resulted in reduced transcript levels of Lsi2 (a known transporter of As). This reduction in Lsi2 expression level is a probable reason for low shoot As accumulation, which has potential implications in reducing the risk of As in the food chain. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据