4.5 Article

Collagen and component polypeptides: Low frequency and amide vibrations

期刊

CHEMICAL PHYSICS
卷 355, 期 2-3, 页码 141-148

出版社

ELSEVIER
DOI: 10.1016/j.chemphys.2008.12.005

关键词

DFT; Collagen; Amide bands; Phonons; Breathing modes; Water dynamics

向作者/读者索取更多资源

Collagen is a fibrous protein, which exists widely in the human body. The biomechanical properties of collagen depend on its triple helix structure and the corresponding low frequency vibrations. We use first-principles, density functional theory methods and analytical force fields to investigate the molecular vibrations of a model collagen compound, the results being validated by comparison with published, inelastic neutron scattering data. The results from these atomistic simulations are used at higher frequency to Study the Amide I and V vibrations and therefore the vibrational signature of secondary and tertiary structure formation. In addition to collagen, its component homopolymers, poly-glycine and poly-proline are also studied. The Amide V vibration of glycine is strongly modified in going from the single helix of poly-glycine II to the triple helix of collagen. The collagen models are hydrated and this work allows LIS to discuss the relative merits of density functional theory and force field methods when tackling complex, partially crystalline systems. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据