4.5 Article

Matrix formulation of direct perturbation theory of relativistic effects in a kinetically balanced basis

期刊

CHEMICAL PHYSICS
卷 349, 期 1-3, 页码 133-146

出版社

ELSEVIER
DOI: 10.1016/j.chemphys.2008.01.056

关键词

direct perturbation theory; relativistic effects; kinetic balance

向作者/读者索取更多资源

Direct perturbation theory (DPT) and its quasi-degenerate version (QD-DPT) in a matrix formulation, i.e. DPT-mat and QD-DPT-mat are derived from the matrix representation of the Dirac operator in a kinetically balanced basis, both in the intermediate and the unitary normalization. The results are compared with those of an earlier formulation in terms of operators and wave functions. In the wave function formulation it is imperative to describe the weak singularities of the wave function at the position of a point nucleus correctly and to satisfy the key relation between large and small components locally. This formulation is incompatible with an expansion in a regular basis. In a matrix formulation in a kinetically balanced basis both the large and the small component are expanded in regular basis sets and the key relation is only satisfied in the mean. DPT is essentially a theory at bispinor level. Although it is possible to eliminate the small component to arrive at a quasi-relativistic theory, this requires some care. A both compact and numerically stable formulation is in terms of the large and the small component. The generalization from a theory for one state to a quasi-degenerate formulation for a set of states, is very simple in the matrix formulation, but rather complicated and somewhat indirect at wave function level, where an intermediate quasi-relativistic step is needed. The advantage of the matrix formulation is particularly pronounced in the unitary normalization. (c) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据