4.7 Article

The effect of extracellular polymeric substances on the adhesion of bacteria to clay minerals and goethite

期刊

CHEMICAL GEOLOGY
卷 360, 期 -, 页码 118-125

出版社

ELSEVIER
DOI: 10.1016/j.chemgeo.2013.10.014

关键词

Bacteria; Adhesion; Soil mineral; Extracellular polymeric substances

资金

  1. National Natural Science Foundation of China [40825002]
  2. Program for Changjiang Scholars and Innovative Research Team in University of China [IRT1247]

向作者/读者索取更多资源

The functions of extracellular polymeric substances (EPS) during the adhesion of Bacillus subtilis to kaolinite, montmorillonite, and goethite were examined by a direct comparison of the adhesion behaviors of native and EPS-free cells via cation exchange resin (CER) treatment using batch experiments, attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy, and potentiometric titration. The EPS removal had no apparent influence on bacterial adhesion when the wet bacteria/mineral mass ratio was low(<0.4 for the clay mineral systems and <1.8 for the goethite system). With higher mass ratios, the absence of EPS reduced adhesion to clay minerals but enhanced adhesion to goethite. The ATR-FTIR spectra suggested that protein conformational changes were involved in the adhesion of bacteria to clay minerals, whereas additional chemical interactions such as P-OFe bonds were important for adhesion to goethite. In addition to electrostatic forces (repulsion for clays and attraction for goethite), absence of chemical interactions may also cause the relatively much weaker bacterial adhesion to clay minerals than to goethite. The absence of EPS did not change the interaction mode of the adhesion to clay minerals but enhanced the chemical interactions via carboxyl groups for bacteria-goethite adhesion. The potentiometric titration results coupled with the ATR-FTIR spectra showed a significant increase in site concentrations of the CER-treated bacteria as compared to the native cells. Changes in surface site concentrations and chemical interactions that were accompanied by the EPS removal may reasonably explain the influences of EPS on bacterial adhesion to different minerals. (C) 2013 Elsevier B. V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据