4.7 Article

Lithium isotopic composition and concentration of the deep continental crust

期刊

CHEMICAL GEOLOGY
卷 255, 期 1-2, 页码 47-59

出版社

ELSEVIER
DOI: 10.1016/j.chemgeo.2008.06.009

关键词

Lithium; Isotope fractionation; Deep continental crust; Granulite xenolith; Metamorphic terrane

资金

  1. N.S.F [EAR 0208012, EAR 0609689]
  2. National Natural Science Foundation of China [40673019, 90714010]
  3. Ministry of Education of China [1307039]

向作者/读者索取更多资源

Samples from Archean high-grade metamorphic terranes in China and granulite-fades xenoliths from Australia (Chudleigh and McBride suites) and China (Hannuoba suite) have been analyzed to assess the Li concentrations and isotopic compositions of the middle and lower continental crust, respectively. Thirty composite samples from metamorphic terranes, including tonalite-trondjhemite-granodiorite (TTG) gneisses, amphibolites and felsic to mafic granulites, show a large variation in Li concentrations (533 ppm) but a relatively narrow range in delta Li-7 values, from +1.7 to +7.5 with a mean of +4.0 +/- 1.4 (1 sigma). These results suggest that the middle continental crust is relatively homogenous in Li isotopic composition and indistinguishable from the upper mantle. This may be a primary feature or may reflect homogenization of Li isotopes during exhumation of the metamorphic terranes. In contrast, Li isotopic compositions of granulite xenoliths from the lower crust vary significantly, with delta Li-7 ranging from -17.9 to +15.7. delta Li-7 of minerals also shows a very large spread from -17.6 to +16.7 for plagioclases and -14.6 to +12.7 for pyroxenes. Large Li isotopic variations exist between plagioclase and pyroxene, with pyroxenes (13 out of 14) isotopically equal to or lighter than coexisting plagioclases. Lithium concentrations of granulite xenoliths also vary widely (0.5 to 21 ppm) and are, on average, lower than those of terranes (5 +/- 4 vs.13 +/- 6 ppm respectively, 1 sigma), consistent with a higher proportion of mafic lithologies and a higher metamorphic grade for the xenoliths. Pyroxene separates from granulite xenoliths have equal or significantly greater Li than coexisting plagioclase. These large Li isotopic variations between minerals and in whole-rock granulite xenoliths mostly reflect diffusion-driven kinetic isotopic fractionation during the interactions of xenoliths with host magma. Only those xenoliths that reach inter-mineral isotopic equilibria are likely to preserve the initial Li isotopic signatures of the lower crust. Eight such equilibrated samples have delta Li-7 from -14 to +14.3, with a concentration weighted average of +2.5, which is our best estimate of the average delta Li-7 of the lower continental crust. The substantial isotopic heterogeneity of the lower crust may reflect the combined effects of isotopic fractionation during granulite-facies metamorphism, diffusion-driven isotopic fractionation during igneous intrusion and variable protolith compositions. Consistent with previous B elemental and O isotopic studies, the Li isotopic heterogeneity in the lower crust indicates that pervasive fluid migration and equilibration have not occurred. Using all data for granulite xenoliths, the Li concentration of the lower crust is estimated to be similar to 8 ppm. Together with previous estimates of Li concentration in the upper and middle crust, the average Li concentration of the bulk continental crust is estimated to be 18 ppm, which is similar to previous estimates. The average Li isotopic composition of the continental crust is estimated to be +1.2, which is isotopically lighter than upper mantle and may reflect the loss of isotopically heavy Li from the continents during weathering and metamorphic dehydration. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据