4.6 Article

The effects of morphology on the thermal reduction of nonstoichiometric ceria

期刊

CHEMICAL ENGINEERING SCIENCE
卷 111, 期 -, 页码 231-243

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2014.01.010

关键词

Concentrating solar; Thermochemistry; Ceria; Redox cycle; Porous; Synthetic fuel

资金

  1. National Science Foundation [EFRI-1038308]
  2. Initiative for Renewable Energy and the Environment [RL-0001-2009, RL-0003-2011]

向作者/读者索取更多资源

A numerical heat and mass transfer model is used to study the effects of the morphological features of a porous medium composed of ceria when it is placed in a cavity and exposed to high-flux solar irradiation to drive a nonstoichiometric reduction. The morphological features are described by the porosity and pore-level Sauter mean diameter. For porosities of 0.60, 0.75, and 0.90, the rate of oxygen production and the efficiency of solar-to-chemical energy conversion increase monotonically as the Sauter mean diameter is decreased from 1000 to 30 mu m. For a porosity of 0.90, these performance metrics continue to increase clown to 10 mu m. The primary effect of the changes in porosity and Sauter mean diameter are through their influence on the permeability and the extinction coefficient of the medium. For appropriately selected time duration, an energy conversion efficiency of 10.9% is achieved with a Sauter mean diameter of 10 mu m and a porosity of 0.90. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据