4.6 Article

Lattice-Boltzmann simulation of fluid flow through packed beds of uniform spheres: Effect of porosity

期刊

CHEMICAL ENGINEERING SCIENCE
卷 99, 期 -, 页码 44-58

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2013.05.036

关键词

Packed bed; Porous media; Lattice-Boltzmann simulation; Computation; Fluid mechanics; Drag force

资金

  1. Australia Research Council (ARC)

向作者/读者索取更多资源

Fluid flow through packed beds of uniform spheres is studied by a parallel lattice-Boltzmann (LB) model. The packed beds are obtained from simulations based on discrete element methods and have a wide porosity range. The LB model is specially designed for particle systems and is validated by comparing the simulated and measured results under different conditions. The validated model is then used to study the effect of porosity on the internal fluid flow and quantify the drag force on particles in packed beds. The results suggest that both the Reynolds number and packing structure significantly affect the fluid velocity distribution. A correlation is demonstrated between the packing structure and the velocity distribution, especially for flows at low Reynolds numbers. Beds with large porosity subjected to relatively large (e.g. moderate) Reynolds numbers are prone to display a secondary peak in the probability distribution of the normalized velocity. The interaction forces between particles and fluid in packed beds are examined. As a result of the non-uniform structure and flow, the drag force on a single particle varies giving a probability distribution. Based on the simulated results, a new equation is proposed to estimate the mean drag force on particles, which is more accurate than the correlations in the literature. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据