4.6 Article

Phase field modeling of Taylor flow in mini/microchannels, Part I: Bubble formation mechanisms and phase field parameters

期刊

CHEMICAL ENGINEERING SCIENCE
卷 94, 期 -, 页码 138-149

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2013.01.049

关键词

Hydrodynamics; Multiphase flow; Numerical analysis; Fluid mechanics; Taylor flow; Phase field

向作者/读者索取更多资源

Multiphase heat and mass transfer in microscale devices is a growing field of research due to the potential of these devices for use in various engineering applications. Before the heat and mass transport phenomena in such systems can be modeled, the hydrodynamics of adiabatic multiphase flow, in the absence of specie transport across interfaces, must be accurately predicted. In the present paper, a finite element implementation of the phase field method is applied to simulate Taylor flow in mini/microchannels. Channels with characteristic dimensions ranging from 100 to 500 mu m are modeled and criteria present in the literature for domain discretization are assessed. The effects of phase field parameters, namely mobility and interface thickness, on the predicted flow features are discussed. The predicted Taylor bubble lengths are compared against empirical correlations as well as available experimental data in the literature. The predicted gas void fraction data for different channel dimensions are compared with numerous experimental studies. The present results indicate a linear variation of gas void fraction with respect to volumetric flow ratio for all channel sizes. (c) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据