4.6 Article

Modeling of multicomponent mass diffusion in porous spherical pellets: Application to steam methane reforming and methanol synthesis

期刊

CHEMICAL ENGINEERING SCIENCE
卷 66, 期 9, 页码 1986-2000

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2011.01.060

关键词

Intraparticle diffusion; Porous media; Multicomponent diffusion; Maxwell-Stefan; Wilke; Dusty gas

资金

  1. Research Council of Norway (NFR)

向作者/读者索取更多资源

The main purpose of this paper is the derivation and evaluation of various diffusion flux models. For this aim, a comprehensive catalyst pellet problem has been simulated for two test cases: the steam methane reforming (SMR) and the methanol synthesis, as these two important chemical processes cover various aspects of a chemical reaction. The pressure, temperature, total concentration, species composition, viscous flow, mass and heat fluxes within the porous spherical pellet are included in the transient pellet model. Mass diffusion fluxes are described according to the rigorous Maxell-Stefan and dusty gas models, and the respectively simpler Wilke and Wilke-Bosanquet models. Simulations are performed with these fluxes defined according to both the molar averaged and mass averaged definitions. For the mass based pellet equations, a consistent set of equations is obtained holding only the mass averaged velocity. On the other hand, the closed set of molar based pellet equations hold both the molar averaged and mass averaged velocities as the fundamental energy balance and the momentum balance (Darcy law) are derived according to the mass averaged velocity definition, whereas the diffusion fluxes are defined relative to the molar averaged velocity. Identical results of the molar and mass based pellet equations were not obtained; however, the deviations are small. It is anticipated that these discrepancies are due to some unspecified numerical inaccuracies. However, efficiency factors have been computed for both processes and the values obtained compare well with the available literature data. Furthermore, efficiency factor sensitivity on parameters like pore diameter, tortuosity, temperature and pressure have been accomplished, and the classical simplifications of the pellet equations have been elucidated: isothermal condition, constant pressure, and neglecting viscous flow. The following conclusions are established for the reactor operating conditions used in the present work. The methanol synthesis: The simulation results of the methanol synthesis indicate that the classical assumptions are very fair for this process. Moreover, both Wilke and Wilke-Bosanquet models are good replacements for the more rigorous Maxwell-Stefan and dusty gas models. However, the simulation results are affected by Knudsen diffusion, thus the diffusion flux is most appropriately described by the Wilke-Bosanquet model. The SMR process: Knudsen diffusion hardly influences the results of the highly intraparticle diffusion limited SMR process. As the Wilke model does not necessarily conserve mass, we recommend the Maxwell-Stefan model because the simpler Wilke closure deviates with several percents. However, it is not elucidated whether these deviations are numerical problems arising from the large gradients of this process, or related to the choice of diffusion model. Isothermal and isobaric conditions can be assumed within the particle, but significant external temperature gradients are observed. Convective fluxes are much less than the diffusive fluxes, hence viscous flow can be neglected. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据