4.6 Article

CFD-DEM simulation of the gas-solid flow in a cyclone separator

期刊

CHEMICAL ENGINEERING SCIENCE
卷 66, 期 5, 页码 834-847

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2010.11.026

关键词

Cyclone; Gas-solid flow; Computational fluid dynamics; Discrete element method; Separation; Granular dynamics

资金

  1. Australia Research Council (ARC)

向作者/读者索取更多资源

In this work, a numerical study of the gas-solid flow in a gas cyclone is carried out by use of the combined discrete element method (DEM) and computational fluid dynamics (CFD) model where the motion of discrete particles phase is obtained by DEM which applies Newton's equations of motion to every individual particle and the flow of continuum fluid by the traditional CFD which solves the Navier-Stokes equations at a computational cell scale. The model successfully captures the key flow features in a gas cyclone, such as the strands flow pattern of particles, and the decrease of pressure drop and tangential velocity after loading solids. The effect of solid loading ratio is studied and analysed in terms of gas and solid flow structures, and the particle-gas, particle-particle and particle-wall interaction forces. It is found that the gas pressure drop increases first and then decreases when solids are loaded. The reaction force of particles on gas flow is mainly in the tangential direction and directs mainly upward in the axial direction. The reaction force in the tangential direction will decelerate gas phase and the upward axial force will prevent gas phase from flowing downward in the near wall region. The intensive particle-wall collision regions mainly locate in the wall opposite to the cyclone inlet and the cone wall. Moreover, as the solid loading ratio increases, number of turns travelled by solids in a cyclone decreases especially in the apex region of the cyclone while the width of solid strands increases, the pressure drop and tangential velocity decrease, the high axial velocity region moves upwards, and the radial flow of gas phase is significantly dampened. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据