4.6 Article

An improved collision damping time for MP-PIC calculations of dense particle flows with applications to polydisperse sedimenting beds and colliding particle jets

期刊

CHEMICAL ENGINEERING SCIENCE
卷 65, 期 22, 页码 6014-6028

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2010.08.032

关键词

CPFD; Fluidization; Mathematical modeling; Multiphase flow; Particle collisions; Particle processing

资金

  1. CPFD Software, LLC

向作者/读者索取更多资源

This paper describes several improvements to a numerical model introduced by O'Rourke et al. (2009) for collisional exchange and damping in dense particle flows. O'Rourke et al. (2009) use a Bhatnagar, Gross, and Krook (BGK) approximation to the collision terms in a particle distribution function transport equation to model the effects of particle collisions on damping fluctuating particle velocities and, in gas/liquid/solid beds, fluctuating temperatures and compositions of liquid films on particle surfaces. In this paper we focus on particle flows in which the particles have no liquid films and report on an improved expression we have developed for the collision damping time of particle velocity fluctuations used in the BGK approximation. The improved expression includes the effects on the collision damping time of the particle material coefficient of restitution and of non-equilibrium particle velocity distributions. The collision model improvements are incorporated into the general-purpose computational-particle fluid dynamics (CPFD) numerical methodology for dense particle flows. Three computational examples show the benefits of using the new collision time in calculations of particle separation in polydisperse dense particle flows and calculations of colliding particle jets. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据