4.6 Article

Solar thermal reduction of ZnO and SnO2: Characterization of the recombination reaction with O2

期刊

CHEMICAL ENGINEERING SCIENCE
卷 65, 期 11, 页码 3671-3680

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2010.03.005

关键词

Thermochemical cycles; Hydrogen; Chemical reactors; Kinetics; Laminar flow; Mathematical modeling

资金

  1. CNRS
  2. Languedoc-Roussillon Regional Council
  3. ANR [ANR-09-JCJC-0004-01]
  4. Agence Nationale de la Recherche (ANR) [ANR-09-JCJC-0004] Funding Source: Agence Nationale de la Recherche (ANR)

向作者/读者索取更多资源

This study addresses the high-temperature solar thermal reduction step of the ZnO/Zn and novel SnO2/SnO thermochemical cycles for H-2 production. A new method was specifically developed to identify the kinetics of the reduced species recombination with O-2. Experimental tests were performed in a solar vessel subjected to high-flux solar irradiation to investigate the influence of pressure, neutral gas flow-rate, and reduction rate on the solar step yield. As a result, the benefic effect of high dilution ratio or reduced pressure operation was pointed out, which there by eliminates the need for a complex quenching device that may induce significant material losses by condensation of the vapors released by the reaction. In addition, the first detailed kinetic analysis of there combination reaction with O-2 (reverse oxidation of SnO and Zn) was proposed. The kinetic parameters(global reaction order and activation energy) were determined by using an original inverse method combining a non-isothermal plug-flow reactor model and ex-situ powders characterization. A global reaction order of about 1.5 corresponding to the reaction stoichiometry was numerically identified for both SnO and Zn recombination, and activation energies were estimated to be 42 +/- 4 kJ/mol for SnO and 35 +/- 3 kJ/mol for Zn. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据