4.6 Article

Ageing under oscillatory stress: Role of energy barrier distribution in thixotropic materials

期刊

CHEMICAL ENGINEERING SCIENCE
卷 64, 期 22, 页码 4668-4674

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2009.03.019

关键词

Ageing under shear; Colloidal glass; Laponite; Soft matter; Slow dynamics; Thixotropy

资金

  1. BRNS young scientist research
  2. Department of Atomic Energy, Government of India

向作者/读者索取更多资源

In this work the ageing dynamics of soft solids of aqueous suspension of laponite has been investigated under the oscillatory stress field. We observed that, at small stresses elastic and viscous moduli showed a steady rise with the elastic modulus increasing at a faster rate than the viscous modulus. However, at higher stresses both the moduli underwent a sudden rise by several orders of magnitude with the onset of rise getting shifted to a higher age for a larger shear stress. We believe that the observed behavior is due to interaction of barrier height distribution of the potential energy wells in which the particle is trapped and strain induced potential energy enhancement of the particles. Strain induced in the material causes yielding of the particles that are trapped in the shallower wells. Those trapped in the deeper wells continue to age enhancing the cage diffusion timescale and consequently the viscosity, which lowers the magnitude of strain allowing more particles to age. This coupled dependence of strain, viscosity and ageing causes forward feedback for a given magnitude of stress leading to sudden rise in both the moduli. Changing the microstructure of the laponite suspension by adding salt affected the barrier heights distribution that showed a profound influence on the ageing behavior. Interestingly, this study suggests a possibility that any apparently yielded material with negligible elastic modulus may get jammed at a very large waiting time. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据