4.7 Article

Effect of surface morphology on catalytic activity for NO oxidation of SmMn2O5 nanocrystals

期刊

CHEMICAL ENGINEERING JOURNAL
卷 354, 期 -, 页码 191-196

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2018.07.197

关键词

NO oxidation; SmMn2O5 nanocrystals; Surface morphology; Hydrothermal synthesis; Crystal planes

资金

  1. Tianjin Natural Science Foundation [16JCYBJC18000]
  2. National Natural Science Foundation of China [21171128, 21703153]

向作者/读者索取更多资源

SmMn2O5 has been reported to be a promising alternative to substitute the current commercial Pt-based catalysts for NO oxidation. In this work, single-crystalline orthorhombic SmMn2O5 nanorods and nanoparticles are successfully synthesized through a tunable hydrothermal route. The pH value of the precursor solution is a decisive factor for morphology control of SmMn2O5 nanocrystals, with decreasing pH value the morphology of SmMn2O5 nanocrystals converts from nanoparticles to nanorods. The nanoparticles exhibit a better catalytic activity for NO oxidation than the nanorods, because they can efficiently convert NO at lower temperature. By the analysis of Xray photoelectron spectrum and high-resolution transmission electron microscope, the oxidation activity is found to be dependent on the high specific surface area and surface crystal planes of SmMn2O5 nanocrystals, which widens and deepens the oxygen chemistry and NO oxidation mechanism on the surfaces of SmMn2O5. This work could not only provide new insights into the morphology control of SmMn2O5 nanocrystals, but also pave a new way for the crystal planes modification of SmMn2O5 nanocrystals as NO oxidation catalyst to achieve an enhanced performance for environmental applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据