4.7 Article

Quantitative-Structure-Activity-Relationship (QSAR) models for the reaction rate and temperature of nitrogenous organic compounds in supercritical water oxidation (SCWO)

期刊

CHEMICAL ENGINEERING JOURNAL
卷 354, 期 -, 页码 12-20

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2018.07.167

关键词

Supercritical water oxidation; QSAR models; Reaction rate constants; Reaction temperature; Quantum chemical parameter; Nitrogenous organics

资金

  1. National Science Foundation of China [NSFC 21177083, 21537002]
  2. National water pollution control key project [2017ZX07202005-005]

向作者/读者索取更多资源

Supercritical water oxidation (SCWO), in which hazardous wastes are removed from water at high temperature and pressure, is an effective method for wastewater treatment. To gain a better understanding of the removal rules for nitrogenous organics in SCWO, a Quantitative-Structure-Activity-Relationship (QSAR) approach was applied to establish the relationship between quantum chemical parameters and removal behaviors. In this study, 41 nitrogenous organics were used to study the removal behaviors, including the reaction rate constants of total nitrogen (k(TN)) and the temperature at which the total nitrogen removal efficiency is 50% (T-TN50). QSAR models were subsequently developed and evaluated. The two optimal models for kTN and TTN50 were stable, robust and accurate, with the associated statistical indices of R-2 = 0.725 and 0.951, q(2) = 0.568 and 0.931, Q(ext)(2) = 0.847 and 0.987, respectively. The two optimal models both contained f (-)(n), E-gap, q(N) and BOx, but varied in the correlation between these four parameters and dependent variables. A three factors theory was thus proposed based on the two optimal models: the selectivity of active site, the transfer of electrons, and the breaking of chemical bond. These two models not only offer theoretical methods for predicting k(TN) and T-TN50, but also have predictive power for the removal behaviors of other nitrogenous organics in SCWO, reducing the need for further experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据