4.7 Article

Amino-functionalized magnetic cellulose nanocomposite as adsorbent for removal of Cr(VI): Synthesis and adsorption studies

期刊

CHEMICAL ENGINEERING JOURNAL
卷 241, 期 -, 页码 175-183

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2013.12.051

关键词

Cellulose; Composite; Cr(VI); Adsorption; Equilibrium

资金

  1. National Natural Science Foundation of China [21106162, 51090382]
  2. National Key Natural Science Foundation of China [21136009]

向作者/读者索取更多资源

A novel amino-functionalized magnetic cellulose composite was prepared by a process involving: (1) synthesis of magnetic silica nanoparticles using the co-precipitation method followed by the hydrolysis of sodium silicate, (2) coating with cellulose through the regeneration of cellulose dissolved in 7 wt% NaOH/12 wt% urea aqueous solvent, (3) grafting of glycidyl methacrylate using cerium initiated polymerization and (4) ring-opening reaction of epoxy groups with ethylenediamine to yield amino groups. Once generated, the resulting composite was tested for its ability to remove Cr(VI) from an aqueous solution in batch experiments. The results demonstrated that Cr(VI) adsorption was highly pH dependent. The optimized pH value was 2.0. The adsorption isotherms of the adsorbent fit the Langmuir model, with the maximum adsorption capacity of 171.5 mg/g at 25 degrees C. The adsorption rate was considerably fast, and the adsorption reached equilibrium within 10 min. The obtained thermodynamic parameters showed that the adsorption of Cr(VI) onto the adsorbent was an exothermic and spontaneous process. In addition, the Cr(VI) ions could be effectively desorbed using a 0.1 mol/L NaOH solution and the adsorbent exhibited a good reusability. The composite material should be a promising adsorbent for Cr(VI) removal, with the advantages of high adsorption capacity, rapid adsorption rate and convenient recovery under magnetic field. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据