4.7 Article

Biogas deep clean-up based on adsorption technologies for Solid Oxide Fuel Cell applications

期刊

CHEMICAL ENGINEERING JOURNAL
卷 255, 期 -, 页码 593-603

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2014.06.072

关键词

Biogas desulfurization; Iron-based adsorbent; Activated carbon; Siloxanes removal; Fuel cell

资金

  1. LIFE+ programme (BIOCELL project) [LIFE07 ENV/E/000847]

向作者/读者索取更多资源

Biogas from anaerobic digestion is a powerful renewable fuel that can be used as a feedstock for fuel cell systems. A biogas deep treatment was installed and operated at pilot plant level in a Waste Water Treatment Plant (WWTP) in Spain in order to demonstrate the integration opportunities with Solid Oxide Fuel Cell (SOFC) technologies. The three-stage polishing system based on adsorption consisted of: (i) a regenerable iron-based adsorbent unit to remove H2S, (ii) a biogas drying unit to remove moisture and (iii) an activated carbon unit to remove the remaining trace components (siloxanes, linear and aromatic hydrocarbons). The biogas entering the polishing system was previously treated in a biotrickling filter for primary H2S abatement. Removal efficiencies on the iron-based adsorbent were over 99% and adsorption capacity was calculated to be of 21%wt. An adsorption mechanism for H2S chemisorption oriented to oxidation to elemental sulphur rather than to crystalline FeS(s) was proposed and could explain the low efficiency of the regeneration process. The remaining contaminant traces were efficiently removed in the drying and activated carbon unit and concentration levels below 0.1 mg/Nm(3) were obtained. A roll-up phenomenon with siloxane D4, which was responsible of adsorption breakthrough on the activated carbon filters, was postulated; and leaded to an overall adsorption capacity of 2%wt. The economic assessment concluded that the cascade configuration of an upstream H2S abatement followed by downstream adsorption technologies, compared to stand-alone adsorption systems, divides the overall treatment cost by three; increasing the profitability of biogas-powered fuel cell projects. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据