4.7 Article

Solar photocatalytic fuel cell using CdS-TiO2 photoanode and air-breathing cathode for wastewater treatment and simultaneous electricity production

期刊

CHEMICAL ENGINEERING JOURNAL
卷 253, 期 -, 页码 174-182

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2014.05.041

关键词

Photocatalytic fuel cell; Solar activation; Air-breathing cathode; Degradation of wastewater organics; Fuel cell characteristics

资金

  1. National Basic Research Program (973 Program) [2014CB748500]
  2. CityU Ability R&D Energy Research Centre [7200297]
  3. Research Fund for the Doctoral Program of Higher Education of China [20130074120019]
  4. Shanghai Pujiang Program [12PJ1402100]

向作者/读者索取更多资源

Solar photocatalytic fuel cell (PFC) is a promising technology for environmental-friendly wastewater treatment and simultaneous production of electricity. In this study, PFC was enhanced by using CdS quantum-dot-sensitized TiO2 nanorod array deposited onto FTO glass as effective photoanode. Moreover, gas diffusion electrode was employed to improve oxygen reduction reaction at the cathode. The material characterization shows that an array of 1.2-mu m TiO2 nanorods is decorated with 10-nm CdS quantum dots, which significantly improve solar light harvesting ability. The results of the PFC performance study indicate that light irradiation, acetic acid concentration, electrolyte pH and conductivity have significant influence on the short-circuit current and maximum power density. When the PFC operates at the optimum pH of 4.6, the short-circuit current and maximum power density are 1.79 mA/cm(2) and 1134 mW/cm(2), respectively. It is found that increasing the electrolyte conductivity is an effective approach to improve the PFC performance. The highest short-circuit current of 5.1 mA/cm(2) and maximum power density of 3980 mW/cm(2) are obtained with electrolyte having a conductivity of 63.1-mS/cm. In addition, the test results of various pure and practical organic substances in PFC further suggest that it is feasible to use sunlight as a driving force to clean up wastewater with simultaneous electricity production. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据