4.7 Article

Adsorption of arsenate on iron(III) oxide coated ethylenediamine functionalized multiwall carbon nanotubes

期刊

CHEMICAL ENGINEERING JOURNAL
卷 181, 期 -, 页码 174-181

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2011.11.052

关键词

Arsenic; Multiwall carbon nanotubes; Amidation; Adsorption; Iron(III) oxide

资金

  1. Ministry of Education and Science of Serbia [III45019, 172007]
  2. FP7 NANOTECH FTM [245916]

向作者/读者索取更多资源

New criteria in assessing the quality of drinking water reduced the maximum permissible concentration of arsenic from 50 mu g L-1 to 10 mu g L-1 and set a requirement for the development of new technologies for arsenic removal. In this paper, ethylenediamine functionalized multiwall carbon nanotubes (e-MWCNT) were loaded with iron(III) oxide in the goethite form, by precipitation of adsorbed Fe3+ and oxidized Fe2+ using base, in that way e-MWCNT/Fe3+ and e-MWCNT/Fe2+ adsorbents, respectively, were obtained. The influence of pH on the As(V) and As(III) removal from drinking water was studied in a batch system, of pH range 3-10 and initial arsenic concentration 0.05-4 mg L-1. Time dependent As(V) adsorption and adsorption data can be described by pseudo-second-order kinetic model and by Freundlich isotherm, applying linear and non-linear fitting methods. The maximum adsorption capacities obtained from Langmuir model for As(V) on e-MWCNT/Fe2+ and e-MWCNT/Fe3+ were 23.47 and 13.74 mg g(-1) at 25 degrees C. respectively. Thermodynamic parameters showed that the adsorption of As(V) was spontaneous and endothermic for both e-MWCNT/Fe2+ and e-MWCNT/Fe3+. Influences of the pH, iron(III) oxide loading and interfering ions were modeled by MINTEQ program, and good agreement between experimental and modeling data was obtained. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据