4.7 Article

Fluid-particle dynamics during combustion spray aerosol synthesis of ZrO2

期刊

CHEMICAL ENGINEERING JOURNAL
卷 191, 期 -, 页码 491-502

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2012.02.093

关键词

Aerosol synthesis; Nanoparticles; Flame spray pyrolysis; Particle dynamics; Computational fluid dynamics

资金

  1. European Community [228885]

向作者/读者索取更多资源

Owing to its versatility and low cost, flame spray pyrolysis (FSP) is becoming an increasingly promising method for industrial production of a broad spectrum of nanoparticles. To assist understanding and scale-up of the current laboratory process, a computational model has been constructed for the example of zirconia nanoparticle synthesis. Therefore, a computational fluid dynamics (CFD) description of the spray flame originating from a twin-fluid atomizer and coaxial diffusion burner was combined with droplet and nanoparticle dynamics. The model predicted well average primary ZrO2 particle diameters even though global chemical reactions, immediate nanoparticle formation upon precursor oxidation and monodisperse particle dynamics were employed. This model is self-containing and does not rely on experimental input data such as temperature or velocity fields. The model was validated at different process conditions with phase-Doppler anemometry (PDA) for spray characteristics, Fourier-transform infrared spectroscopy (FTIR) flame temperature measurements as well as nanoparticle sampling in and above the flame. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据