4.7 Article

Biomass accumulation in a biofilter treating toluene at high loads - Part 2: Model development, calibration and validation

期刊

CHEMICAL ENGINEERING JOURNAL
卷 209, 期 -, 页码 670-676

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2012.08.019

关键词

Biomass growth; Kinetic parameters estimation; Modeling; Toluene abatement; High loads; Biofiltration

资金

  1. MEC (Ministerio de Educacion y Ciencia, Spain)
  2. Comision Interministerial de Ciencia y Tecnologia (CICYT)
  3. European Regional Development Fund (ERDF-EC) [CTQ 2006-14997-C02-02, CTQ 2009-14338-C03-03]

向作者/读者索取更多资源

In this work, a dynamic model describing volatile organic compounds abatement and the corresponding biomass accumulation is developed, calibrated and validated. The mathematical model is based on detailed mass balances which include the main processes involved in the system: advection, absorption, adsorption, diffusion, biodegradation and biomass growth. The model overcomes common assumptions considered in classical biofiltration models such as uniform, constant biomass distribution. The model was calibrated and validated using experimental data obtained from a biofilter packed with clay pellets during its operation from inoculation to clogging. The model was able to predict satisfactorily experimental data by calibrating only a minimum number of parameters such as the half-saturation constant for toluene and the volumetric maximum growth rate of microorganisms. Kinetic parameters were fitted by means of an optimization routine using toluene concentration profiles along the bed height of the biofilter. A confidence interval for each parameter was calculated based on the Fisher Information Matrix procedure. The model was satisfactorily validated during the operation of the biofilter under different process conditions. Biomass accumulation permitted to predict macroscopic, critical operating parameters such as the pressure drop through the bed. The model may help predicting energy consumption requirements as well as biomass clogging episodes due to excessive biomass growth. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据