4.7 Article

Separation of toluene/n-heptane mixtures experimental, modeling and optimization

期刊

CHEMICAL ENGINEERING JOURNAL
卷 173, 期 1, 页码 11-18

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2011.07.018

关键词

Pervaporation; Toluene/n-heptane mixtures; Composite membrane; Neural network; Multi-objective optimization

向作者/读者索取更多资源

In this paper a composite membrane is used to separate toluene from n-heptane mixture. The aim is to optimize the separation process conditions through modeling. Therefore this model should be able to predict membrane performance demonstrated by total permeation flux and toluene selectivity as a function of operating condition. In order to create a black box model of the process, a multi layer feed forward artificial neural network is used. An algorithm based on evaluating all possible structures is employed to create an optimum ANN model. Number of hidden layers, transfer function, training method and hidden neurons are determined with the aid of this algorithm. Performance confirms that there is good agreement between the experimental data and the model predicted values, with correlation coefficients of more than 0.99 and mean square errors of less than 1%. Both model and experimental data show that increasing temperature and toluene concentration increase total flux and decrease toluene selectivity but increasing permeate pressure decreases both. Having created and trained an optimized ANN model a multi-objective genetic algorithm is employed to find optimum operating conditions with respect to permeation flux and toluene selectivity as two targets of this separation. Considering the obtained Pareto set and corresponding decision variables, it is found that permeate pressure in this set is almost constant and only variations in temperature and feed concentration eventuate to the creation of the Pareto front. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据