4.7 Article

Correlations of WO3 species and structure with the catalytic performance of the selective oxidation of cyclopentene to glutaraldehyde on WO3/TiO2 catalysts

期刊

CHEMICAL ENGINEERING JOURNAL
卷 159, 期 1-3, 页码 242-246

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2010.02.024

关键词

WO3/TiO2; TiO2 microsphere; Cyclopentene; Selective oxidation; H2O2

资金

  1. National Nature Science Foundation of China [20877013]
  2. National High Technology Research and Development Program of China (863 Program) [2007AA061402]
  3. Major State Basic Research Development Program of China (973 Program) [2007CB613306]
  4. Foundation of Ministry of Education of China [20070141060]

向作者/读者索取更多资源

A series of WO3/TiO2 catalysts were synthesized by ultrasonic impregnation method using as-prepared TiO2 microspheres as support as a function of tungsten oxide species loading. The crystalline structure, molecular structure and the interaction with the support of the supported tungsten oxide phase were characterized by various techniques (scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS) and specific surface areas (BET)), and their effects on the catalytic performance in selective oxidation of cyclopentene to glutaraldehyde were investigated. It was found that highly dispersed WO3 species were obtained on the surface of TiO2, and only W(VI) oxidation state was present on the support. The WO3/TiO2 catalysts showed high catalytic activity for selective oxidation of cyclopentene to glutaraldehyde. The catalytic activity increased with the WO3 loading, and reached maximum on the catalysts with the WO3 loading of 15-20 wt%. The molecular structures of calcinated tungsten oxide phase were determined to be tetrahedral surface tungsten oxide species with the WO3 loading below 20 wt%, and both Bronsted acid sites and Lewis acid sites were present on the surface of the catalysts. The strong support effect on the dispersion and molecular structure of WO3 as well as the Bronsted acid observed in the present work may have important catalytic implication. Further increasing the WO3 loading resulted in the decrease of catalytic performance of the catalyst, meanwhile the crystalline WO3 nanoparticles were present on the surface of the support. These reactivity trends showed the influence of molecular structure of WO3 on the surface of TiO2 support on the selective oxidation activity of cyclopentene to glutaraldehyde. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据