4.7 Article

Marine microalgae flocculation and focused beam reflectance measurement

期刊

CHEMICAL ENGINEERING JOURNAL
卷 162, 期 3, 页码 935-940

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2010.06.046

关键词

Marine microalgae; Dewatering; Flocculation; FBRM; Biodiesel

资金

  1. Australia Research Council (ARC)
  2. Biofuel Pty Ltd., Victoria, Australia
  3. Monash University, Victoria, Australia

向作者/读者索取更多资源

The production of biodiesel from fast growing and lipid containing marine microalgal species is sustainably and economically more promising than fresh water microalgae. However, like fresh water microalgae, the process is limited by numerous factors such as the generally dilute nature of microalgal cultures, and the small size of microalgae cells, except for multi-cellular species such as Spirulina. Current dewatering technologies are sufficiently able to separate microalgae from the culture media; however the economics of the process makes these technologies ineffective as they are all too expensive when compared with the low cost of biodiesel from other sources. Centrifugation, which is one of the current technologies, is highly energy intensive especially in a large-scale setting. Filtration techniques such as tangential flow filtration has the potential to be a low cost dewatering technique, however there is a cost issue associated with the replacement of clogged membranes. Flocculation is another commonly used dewatering technique that has the advantage of using less energy under optimum conditions. Thus process development for marine microalgae flocculation could be an essential step to revolutionize biodiesel production from microalgae. In this work, mixed cultures of marine microalgal species were obtained from semi-continuous laboratory reactors and flocculation was investigated using polyelectrolyte (polymer) flocculants. Cationic, anionic and non-ionic polyelectrolyte flocculants were tested using the standard jar stirrer test at varying pH and temperature. All three flocculant types displayed suitability for microalgae flocculation with the cationic polymer obtaining the highest flocculation efficiency of 89.9% at an optimum concentration of 4 mg/L. Focused beam reflectance measurements (FBRM) showed real time changes in microalgal flocs size during the flocculation process. This data is essential to understand the kinetics of microalgal flocs formation, to ensure the stability of the floc formation process, and to monitor and evaluate the performance of the flocculation process. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据