4.5 Article Proceedings Paper

Balancing mixed-model assembly lines with sequence-dependent tasks via hybrid genetic algorithm

期刊

JOURNAL OF GLOBAL OPTIMIZATION
卷 65, 期 1, 页码 83-107

出版社

SPRINGER
DOI: 10.1007/s10898-015-0316-1

关键词

Mixed-model assembly line balancing; Sequence-dependent tasks; Combined precedence graph; Hybrid genetic algorithm; Elite preservation strategy

向作者/读者索取更多资源

Close connections existing among sequence-dependent tasks should be emphasized while assembling products within automotive or electronic industries. This paper addresses the mixed-model assembly line balancing problem with sequence-dependent tasks with two objectives, the minimization of cycle time and workload variance. A hybrid genetic algorithm with novel logic strings was proposed to address the problem. First, both the sequence-dependent connections and precedence relations are integrated into the combined precedence graph so as to transform the original problem into the single-model assembly line balancing problem and to decrease the computational complexity. Second, three heuristic factors are hybridized into the process of initialization with the purpose of improving the quality of initial solution population. Third, considering sequence-dependent tasks, logic strings are designed to ensure the feasibility of chromosomes during two-point crossover and insertion mutation operations. Computational studies have demonstrated that the proposed algorithm can solve problems to near-optimality and even optimality with less computational effort.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据