4.3 Article

Effects of Thermal Radiation and Mass Diffusion on Free Convection Flow Near a Vertical Plate with Newtonian Heating

期刊

CHEMICAL ENGINEERING COMMUNICATIONS
卷 199, 期 5, 页码 628-643

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/00986445.2011.611058

关键词

Heat and mass transfer; Laplace transform technique; Natural convection; Newtonian heating; Rosseland diffusion approximation; Vertical plate

向作者/读者索取更多资源

The effects of thermal radiation and mass transfer on unsteady natural convection flow of an optically dense viscous incompressible fluid near a vertical plate with Newtonian heating have been investigated. Both physically important boundary conditions of uniform wall concentration (UWC) and uniform mass flux (UMF) are considered. Rosseland diffusion approximation is used to describe the radiative heat flux in the energy equation. The governing dimensionless boundary layer equations are solved analytically using the Laplace transform technique. The effects of mass to thermal buoyancy ratio parameter (N), Prandtl number (Pr), Schmidt number (Sc), and the radiation parameter (R) as well as time (t) on the velocity field and skin friction are determined. It is found that velocity increases for aiding flows and it decreases for opposing flows in the cases of both UWC and UMF. The skin friction is reduced with increasing species concentration in the presence of aiding flows for both UWC and UMF. Also, the velocity is greater in the case of UWC than the case of UMF at an early time, whereas the velocity is slightly greater in the case of UMF than that of UWC at a later time in the vicinity of the plate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据