4.5 Review

A review of membrane selection for the dehydration of aqueous ethanol by pervaporation

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cep.2011.01.003

关键词

Pervaporation; Polar polymers; Polyanions; Polycations; Polysalts

向作者/读者索取更多资源

Four broad types of membranes are categorised: organic polymers generally, crosslinked poly(vinyl alcohol), organic-inorganic hybrids and charged polymers. The best performers in terms of flux, which reaches a maximum of 5 kg/m(2)h, are anionic or cationic polymers, including polysalts. Polyanion and polysalt membranes are superior. Two examples are thin layers of the active polysalt membrane on a supporting membrane. The best combination for flux and selectivity is a polyethyleneimine/poly (acrylic acid) polysalt deposited on a reverse osmosis membrane, at 4 kg/m(2)h and 1075 respectively. It is noticeable that hybrid poly(vinyl alcohol)/inorganic membranes do not show enhanced fluxes. Very high separation factors were observed, covering a range of polymers, of neutral, anionic or cationic character. The top results (>10,000) were for charged membranes, either cationic or anionic, but not polysalts. The fluxes encountered here were miniscule, the best being caesium alginate at about 1 kg/m(2)h. The ideal structure for high fluxes would appear to be one containing discrete domains of oppositely charged species of optimal size. Fresh approaches are being actively studied, such as layer-by-layer deposition of oppositely charged polyelectrolytes, with due attention to appropriate separation of the sites of opposite character. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据