4.7 Article

Block copolymer self-assembly controlled by the green gas stimulus of carbon dioxide

期刊

CHEMICAL COMMUNICATIONS
卷 50, 期 79, 页码 11631-11641

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4cc03412k

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. le Fonds de recherche du Quebec: Nature et technologies (FRQNT)

向作者/读者索取更多资源

Stimuli-responsive macromolecules have inspired much interest in polymer science. Inputting an external stimulus to these polymers can modulate their chain structures and self-assembled architectures for functional outputs. This appealing feature has made this class of polymer materials promising for many emerging applications. In order to apply these polymer systems in organisms and further make them adaptive to physiological environments, it is important to explore new stimulation modes. In this Feature Article, we review the recent development of using carbon dioxide (CO2) as a stimulus for tuning or controlling block copolymer (BCP) self-assembly. We show that a series of CO2-responsive functionalities can easily be incorporated into BCP structures, and that rationally designed BCPs can have their self-assembled structures undergo drastic changes in size, shape, morphology and function, controlled by the amount of CO2 in aqueous solution. This gas stimulus has some distinct advantages over other conventional stimuli: it is truly green for the environment of the target polymer system without any chemical contaminations; the stimulating strength or magnitude can be precisely adjusted with the continuous gas flow; and, being a key metabolite in cells, it provides a convenient physiological signal to allow synthetic polymer systems to mimic certain properties of organelles and act as intelligent macromolecular machines and devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据