4.0 Article

Degradation of sucrose, glucose and fructose in concentrated aqueous solutions under constant pH conditions at elevated temperature

期刊

JOURNAL OF CARBOHYDRATE CHEMISTRY
卷 19, 期 9, 页码 1305-1318

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/07328300008544153

关键词

-

向作者/读者索取更多资源

The degradation of sucrose can decrease sucrose yield, reduce the efficiency of sugar factory and refinery processes, and affect end product quality. Characterization of sucrose degradation under modeled industrial processing conditions will underpin further technological improvements. Effects of constant reaction pH on sucrose degradation were investigated using simulated industrial model systems (100 degreesC; 65 degrees Brix [% dissolved solids]; N-2; 0.05-3 mol NaOH titrant; 8 h), with the use of an autotitrator. Reaction pH values ranged from 4.40 to 10.45. Polarimetry and ion chromatography with integrated pulsed amperometric detection (IC-IPAD) were used to quantify sucrose degradation and first-order reaction constants were calculated. Minimum sucrose degradation occurred between pH 6.45 - 8.50, with minimum color formation between pH's 4.40 - 7.00. Polarimetry, often used in U.S. sugar factories and refineries to monitor chemical sucrose losses, was shown not to be viable to measure sucrose degradation under alkaline conditions, because of the formation of fructose degradation products with an overall positive optical rotation. For comparison, fructose and glucose (80 degreesC; 65 degrees Brix; N-2; 3 mol NaOH; 2 h) were also degraded at constant pH 8.3 conditions. For sucrose, fructose, and glucose, formation of organic acids on degradation was concomitant with color formation, indicating they are probably produced from similar reaction pathways. For the glucose and fructose degradation reactions, color and organic acid formation also were highly correlated (R-2>0.966) with changes in optical rotation values, confirming that these compounds are formed from similar reaction pathways.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据