4.4 Article

Leaf senescence-like characteristics contribute to cotton's premature photosynthetic decline

期刊

PHOTOSYNTHESIS RESEARCH
卷 65, 期 2, 页码 187-195

出版社

SPRINGER
DOI: 10.1023/A:1006455524955

关键词

chlorophyll fluorescence; gas exchange; Gossypium hirsutum; rubisco

向作者/读者索取更多资源

Leaf and canopy photosynthesis of cotton (Gossypium hirsutum L.) declines as the crop approaches cutout, just as the assimilate needs for reproductive growth are peaking. Our objective with this study was to determine whether this decline is due to remobilization of leaf components to support the reproductive growth or due to some cue from the changing environmental conditions during the growing season. Field studies were conducted in 1995-1996 at Stoneville, Mississippi, using six cotton genotypes and two planting dates (early and late), which produced two distinctly different cotton populations reaching cutout at different times. Among the six genotypes were a photoperiod sensitive line (non-flowering) and its counter part which had photoperiod insensitive genes backcrossed four times to the photoperiod sensitive line (flowering). This pair was used to assess the degree that the photosynthetic decline could be attributed to reproductive sink development. Leaf CO2-exchange rate (CER) and chlorophyll (Chl) fluorescence measurements were taken in mid-August, a period corresponding to cutout for the early planted plots, and those leaves were collected. Leaf Chl level, soluble protein level, various soluble carbohydrate levels and Rubisco activities were assayed on those leaves. Averaged across years, leaf CER and soluble protein levels were reduced approximately 14% and 18%, respectively, for the early planted compared to the late planted cotton. Neither leaf Chl levels or Chl fluorescence Fv/Fm values for Photosystem II yield were altered by the planting date. In 1996, leaves from the non-flowering line had 12% greater Chl and 20% greater soluble protein levels than the flowering line. However, in 1996, the CER of the early planted non-flowering line was reduced 10% compared to the late planted. Although remobilization of leaf N to reproductive growth appears to be the principle component causing the cutout photosynthetic decline, the data also indicate that environmental factors can play a small role in causing the decline.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据