4.0 Article

Interface thermal conductance and the thermal conductivity of multilayer thin films

期刊

HIGH TEMPERATURES-HIGH PRESSURES
卷 32, 期 2, 页码 135-142

出版社

OLD CITY PUBLISHING INC
DOI: 10.1068/htwi9

关键词

-

向作者/读者索取更多资源

Accurate and simple measurements of the thermal conductivity of thin films deposited on high thermal conductivity substrates have been recently enabled by the development of an Ac hot-wire method, the 3 omega method. Recent progress in the measurement and understanding of heat transport in ultra-thin films (much less than 1 mu m thick) and multilayers is reviewed, and the possibility of using solid-solid interfaces on nanometer length scales to control heat transport in thin film materials is explored. The finite thermal conductance of solid-solid interfaces becomes important when considering heat transport in single layer films <100 nm thick. Through the use of multilayer films-for example, epitaxial superlattices of crystalline semiconductors or nanometer-thick layers of amorphous and microcrystalline oxides-we can study materials with an extremely high and controllable density of internal interfaces, and evaluate the effect of these interfaces on heat transport. For the case of Si-Ge superlattices, the relatively large mismatch of the vibrational properties of silicon and germanium creates a larger reduction in thermal conductivity than for GaAs-A1As superlattices. Surprisingly, heat conduction in multilayers of disordered oxides is essentially unchanged by a high interface density.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据