4.7 Article

Quantum dot-sensitized solar cells incorporating nanomaterials

期刊

CHEMICAL COMMUNICATIONS
卷 47, 期 34, 页码 9561-9571

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1cc11317h

关键词

-

资金

  1. National Science Council, Taiwan [99-2627-M-002-016, 99-2627-M-002-017]
  2. National Taiwan University

向作者/读者索取更多资源

Quantum dot-sensitized solar cells (QDSSCs) are interesting energy devices because of their (i) impressive ability to harvest sunlight and generate multiple electron/hole pairs, (ii) ease of fabrication, and (iii) low cost. The power conversion efficiencies (eta) of most QDSSCs (typically <4%) are, however, less than those (up to 12%) of dye-sensitized solar cells, mainly because of narrow absorption ranges and charge recombination occurring at the QD-electrolyte and TiO2-electrolyte interfaces. To further increase the values of eta of QDSSCs, it will be necessary to develop new types of working electrodes, sensitizers, counter electrodes and electrolytes. This Feature Article describes the nanomaterials that have been used recently as electronic conductors, sensitizers and counter electrodes in QDSSCs. The nature, size, morphology and quantity of these nanomaterials all play important roles affecting the efficiencies of electron injection and light harvesting. We discuss the behavior of several important types of semiconductor nanomaterials (sensitizers, including CdS, Ag2S, CdSe, CdTe, CdHgTe, InAs and PbS) and nanomaterials (notably TiO2, ZnO and carbon-based species) that have been developed to improve the electron transport efficiency of QDSSCs. We point out the preparation of new generations of nanomaterials for QDSSCs and the types of electrolytes, particularly iodide/triiodide electrolytes (I-/I-3(-)), polysulfide electrolytes (S2-/S-x(2-)), and cobalt redox couples ([Co(o-phen)(3)(2+)/(3+)]), that improve their lifetimes. With advances in nanotechnology, we foresee significant improvements in the efficiency (eta > 6%) and durability (> 3000 h) of QDSSCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据